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Abstract. Density based molecular dynamics has been used to investigate the ground state structures of
heterogeneous binary clusters Al13Lin, n = 1, 2, 3, 4, 10, 19, 20, 21. Some of these structures have also
been investigated by full Kohn-Sham based calculations. Our earlier investigations have shown that in the
Al–Li cluster, the ground state configurations are the ones where the Al atoms form a core around which
the Li atoms form a “cage”. In the present work, we have chosen the well-known Al13 icosahedron as the
surface over which we study the evolution of the surface coverage as the number of Li atoms increases. On
the basis of the earlier work, we expect that the Al13Li20 cluster would be the most stable and indeed our
simulations do yield such a novel fivefold symmetric stable structure formed out of purely metal atoms.
This icosahedral substrate is also used to study the coverage of the aluminum surface by lithium atoms. For
a small number of Li atoms, these studies suggest that the Li–Li dimerisation is not particularly favored.

PACS. 61.46.+w Clusters, nanoparticles, and nanocrystalline materials – 36.40.-c Atomic and molecular
clusters

1 Introduction

The problem of evolution and structure of finite sized sys-
tems, e.g. clusters, has received a major impetus with the
advent of experimental and theoretical tools for produc-
tion and analysis of properties of clusters. Such investi-
gations also offer a possibility of producing novel stable
clusters. A number of investigations, both theoretical and
experimental, have been carried out on clusters with few
atoms as well as clusters with thousands of atoms. An un-
derstanding of the physics of clusters is expected to help
bridging the gap between atomic and molecular physics
and condensed matter physics.

There have been a significant number of theoretical
investigations on mainly homogeneous clusters pertaining
to their ground state properties, for example their geomet-
ric structure [1,2]. The interest in the physics and chem-
istry of clusters arises due to a number of reasons like the
availability of free cluster sources, their distinct shapes
and characteristic electronic properties which are differ-
ent from bulk and the possibility of using them as build-
ing blocks for novel nanostructured materials etc. Another
interesting observation has been the existence of “magic
numbers” in the abundance spectra of clusters, observed
in experiments on simple alkali metal clusters [3]. Clusters
with 2, 8, 18, 20, 40, 58 and 92 atoms were observed to be
more stable and hence more abundant. This observation
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has been understood on the basis of closed shell configura-
tion within the framework of the spherical jellium model.

While a significant amount of theoretical work has
been done on homogeneous clusters, relatively less has
been done on heterogeneous clusters. Work in this area
has been primarily on impurity studies, e.g. an alu-
minum atom in a lithium cluster, a Magnesium impurity
in Sodium cluster etc. Studies of heterogeneous clusters
are computationally taxing as a large configuration space
needs to be spanned for obtaining the ground state struc-
tures. A few investigations of an impurity in metal atom
clusters using ab initio molecular dynamics method have
been reported on LinAl [4]. The results are also available
on heteroatomic clusters like alkali-metal-atom-antimony
(AnSb4) clusters [5], NanFn [6], NanKm [7] and AlnLin
[8,9] NanAl [10] and NanMg [11] etc. These early investi-
gations reveal some interesting properties like trapping of
impurity atoms, clustering tendencies and enhanced sta-
bility with doping.

In the earlier work, we have carried out detailed cal-
culations on heterogeneous AlnLi7 (n = 1, 7) and AlLin
(n = 1, 8) [8] and AlnLin clusters (n = 1− 10 and 13) [9]
using the Density Based Molecular Dynamics (DBMD)
technique to determine the ground state structures. A
general clustering tendency of aluminum atoms has been
observed in these systems. It appears that these stable
cluster geometries are dictated by the geometry of the alu-
minum core and the tendency of covalent bond formation
between Li–Al. Thus lithium atoms arrange themselves to
maximize the Li–Al bonds with tetrahedral coordination,
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wherever possible. This can be understood on the basis
of the fact that amongst all the bonds the Al–Al bond is
stronger than the Li–Al bond and the cluster will stabi-
lize itself by maximizing Li–Al bonds together with Al–Al
bonds. Clearly, in a finite size small cluster having large
surface area this can be easily achieved by placing the
lithium atom on the surface. Therefore, if all the faces
of the aluminum cluster are capped, the structure should
become more stable. Indeed this is borne out by our cal-
culations so far.

These observations suggest that if the surface geome-
try and the relative bond strengths between the Li–Al and
the Li–Li bonds affect the geometry and stability of these
clusters, then the icosahedral Al13 system should present
a “substrate” over which Li atoms can form a shell. Also,
the structure resulting out of a complete coverage of the
Al13 surface is expected to be the most stable. Further,
the “spherical” nature of the substrate also opens up a
possibility of studying how lithium covers the aluminum
icosahedron, if it does so. In the present paper, we inves-
tigate this problem by using the (DBMD) technique. It
may be mentioned the thirteen atom clusters of simple
atoms like Na, Mg and Al have already been investigated
by Röthlisberger et al. using ab initio methods [12]. It
turns out that out of all these systems, Al13 retains the
icosahedral symmetry indicating very small Jahn-Teller
distortions and hence is very suitable for the present in-
vestigation via DBMD method.

The ab initio molecular dynamical method, which com-
bines density functional theory with molecular dynamics
has proven to be a powerful technique for probing the
ground state geometries of clusters. The standard Car-
Parrinello (CP) method [13] uses the Kohn-Sham (KS)
formulation [14,15] and for large systems may prove to be
computationally intensive. The recent development of an
orbital free approach was able to achieve an independence
from the orbital based description by describing the total
energy completely in terms of the electron density [16].
The method is approximate in that it uses the kinetic en-
ergy functionals based on charge density only.

The DBMD method has been demonstrated to yield
correct ground states for a number of clusters with bond
lengths within a few percent of the actual Kohn-Sham cal-
culation. We have extensively tested this technique by ap-
plication to various small simple metal clusters like dimers
and trimers of Li, Na, Mg, Al etc. [4,8,9]. For example,
the equilibrium bond lengths obtained by DBMD method
for the dimer systems like Li–Li and Al–Al are within a
few percent of the KS results. The DBMD technique also
correctly predicts the ground state geometry of the Al13

cluster to be icosahedral with bond lengths to within 3%
of the KS value. We have used this density based tech-
nique in our calculations primarily for it’s speed, and it’s
ability to sustain long stable runs, thus allowing a large
configuration space to be spanned.

In the next section, we briefly describe the method and
the numerical details. This is followed by a presentation
and discussion of the geometries obtained by our calcula-
tions.

2 Method and numerical details

In this section, we present a brief description of the DBMD
method, which is based on an approximate description
of the kinetic energy functional and the Car-Parrinello
molecular dynamics. In the spirit of the Hohnberg-Kohn
formulation, the total energy of the system is written in
terms of the electronic charge density only and the molec-
ular dynamics is performed by setting up the fictitious
Lagrangian. Consequently, the method scales linearly with
the size of the system. All the other ingredients are the
same as that used in the standard Car-Parrinello molec-
ular dynamics, for example the use of pseudopotentials
and plane wave expansion, periodically repeated large unit
cells and simulated annealing strategy.

Thus the total energy of a system consisting of Na
atoms and Ne interacting electrons, under the influence of
an external field due to the nuclear charges at coordinates
Rn can be written as a functional of the total electronic
charge density ρ(r) as

E[ρ(r), {Rn}] = T [ρ(r)] +Eext [ρ(r), {Rn}]

+Ec[ρ(r)] + Exc[ρ(r)] +Eii [{Rn}] (1)

where ρ(r) is the electronic charge density, T is the kinetic
energy, Eext is the electron-ion interaction energy Ec is
the electron-electron coulomb interaction energy, Exc is
the exchange correlation energy, and Eii is the ion-ion
interaction energy.

It may be noted that except for the first term, all the
other terms can be explicit functionals of charge density
only. The first term, which represents the kinetic energy
of the non-interacting electron gas can be calculated only
approximately in terms of ρ(r). One of the most used ap-
proximations is given by

T [ρ] = TTF [ρ] + TW [ρ] (2)

where TTF is the Thomas-Fermi Kinetic energy functional
and TW is the Weizsacker correction. Thus,

T [ρ] =
3
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where λ = 1 for the original Weizsacker value.
Extensive work has been carried out using these func-

tionals mainly on atomic systems [17] and the following
improved functional has been suggested.

T [ρ(r)] = F (Ne)TTF [ρ(r)] + TW [ρ(r)] (4)

where TTF is the Thomas Fermi term, TW is the gradient
correction given by Weizsacker and the factor F (Ne) is
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with optimized parameter values A1 = 1.314 and A2 =
0.0021 [18]. At this stage, some comments on the choice of
the kinetic energy functional and it’s parametrisation are
in order. The motivation for proposing the functional used
here and it’s variations have been extensively discussed by
Parr et al. [17]. It turns out that for the correct long range
behaviour and the correct cusp conditions at the nuclei,
the TW component needs to be the leading term and the
first term represents the statistical estimates of the differ-
ence between the true kinetic energy and the TW term.
We have used the available parameters for F (Ne), which
are based on the kinetic energies of atoms including the
core states, while the present calculations are for valence
electrons only.

Ideally, the fit should be carried out using the atomic
kinetic energies of valence electrons only. However, such a
fit cannot be carried out obviously because the data for
the kinetic energy versus the number of valence electrons
will be very limited. Therefore, the available parameter
values have been used. It turns out that the total energies
are not very sensitive to the values of the parameters used
in F (Ne).

This is so because about 10% change in parameter A2

leads to about 10% change in the value of F (Ne). Con-
sidering that the kinetic energy contribution in the total
energy is about 15%, the error in the total energy is very
small. Indeed, this is borne out by the fact that our DBMD
results are always within 10% of the Kohn-Sham values on
all the systems studied so far [8,9].

Although a better fit is welcome, the results obtained
so far by the DBMD method indicate that the total ener-
gies are not very sensitive to the parametrisation of F (Ne).
Further more, the critical structures in the present calcu-
lations, have been re worked by full Kohn-Sham calcula-
tions.

The Car-Parrinello technique is applied to the total
energy functional (1) by defining the pseudo Lagrangian
as

L = µ

∫
ρ̇(r)d3r +

1

2

∑
n

Mn|Ṙn(t)|2

−E
[
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]
+
(
Λ
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)
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where Λ is the Lagrangian undetermined multiplier be-
cause of the normalization condition. The resulting equa-
tions are solved with the standard Verlet technique. We
have found it most convenient to vary ρ̃(r) ≡ ρ(r)1/2, for
maintaining the constraint of positivity of the electronic
charge density.

All calculations have been performed using plane wave
expansion for ρ̃ (r). The local part of Bachelet, Hamann
and Schlüter pseudopotentials [19] and the exchange cor-
relation potential of Ceperley-Alder as interpolated by
Perdew and Zunger [20] were used. A periodically repeated
unit cell of length 40 a.u. with a 64 × 64 × 64 mesh and
time step ∆t ∼ 20 a.u., corresponding to about 10−16 s,
was used. We have chosen to use the plane wave expan-
sion on the entire Fourier transform mesh without any
truncation yielding the energy cutoff of 95 Ry.

In the dynamics run, we were able to evolve the system
for ∼ 30 000 time steps without explicit electron quench-
ing. All the ground state geometries have been obtained
by simulated annealing by heating the systems to about
1200 K. In addition, the ground state has also been con-
firmed by re-heating and cooling and by starting with a
different initial configuration.

Full Kohn-Sham calculations have also been carried
out on some crucial systems. A periodically repeated unit
cell of length of 40 a.u. with a 64 × 64 × 64 FFT mesh was
used. The energy cutoff used for the plane wave expansion
was about 13 a.u. requiring about 40 000 reciprocal lat-
tice vectors. The self consistent solution to the standard
Kohn-Sham equations have been achieved via conjugate
minimization technique following [15]. The pseudopoten-
tials used are identical to the ones used in the DBMD
calculations. The CP dynamics time step was 10 a.u. It
was found necessary to use dynamic occupancies for the
states during the iterations. The results of these calcula-
tions are discussed in the next section.

3 Results and discussion

As mentioned in Section 1 the free aluminum 13 cluster is
known to form a stable icosahedron in it’s ground state.
This nearly spherical surface can lend itself well to a study
of surface coverage by lithium atoms. That lithium atoms
will cover the aluminum surface is suggested by the clus-
tering tendency of the earlier Al–Li systems. Then for the
Al13Li20 one would expect a five-fold symmetric structure,
with lithium atoms capping all 20 faces of icosahedral alu-
minum core and forming five-membered rings. It is grati-
fying to see this expectation realized by our simulations.
A study of the capping tendency of lithium atoms was
motivated by these considerations. As a “spherical” sur-
face, the Al13 icosahedron also presents an ideal system
to study the coverage of lithium atoms on the spherical
surface.

In all the figures, the aluminum atoms are shown in
black and the lithium atoms in white.

Figures 2–8 show the stable ground state for Al13Lim,
m = 1, 2, 3, 4, 10, 19, 20, 21 free clusters. The binding
energies per atom for these clusters are shown in Figure 1
showing m = 20 to be energetically more stable. In all the
cases, the icosahedral structure of the aluminum core is
preserved.

For a single lithium atom, there are two possible pos-
tions, (i) the bridge position, i.e. at the center of the Al–
Al bond, and (ii) at the center of the triangle. Our cal-
culations indicate that the most stable position to be at
the center of the triangle as shown in Figure 2. Further,
it is interesting to observe the motion of single lithium
atom on the spherical surface upon heating. In this case,
lithium traces a path midway through the Al–Al bond in-
dicating that the potential barrier for crossing the face is
lower along this path. Naively one would expect the sec-
ond lithium atom to go on any one of the nearest neighbor
face. However, the configuration shown in Figure 3 turns
out to be lower by about 0.05 eV, when it is placed on the
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Fig. 1. Binding energy per atom in a.u. for the clusters inves-
tigated.

Fig. 2. Ground state geometry of Al13Li1 cluster.

Fig. 3. Ground state geometry of Al13Li2 cluster.

Fig. 4. Ground state geometry of Al13Li3 cluster.

Fig. 5. Ground state geometry of Al13Li4 cluster.

Table 1. Bond Distances between Li–Li and Li–Al for nearest
neighbor and next nearest configurations for three clusters. All
distances are in a.u., i.e. Bohr radii.

Cluster Nearest Next Nearest

Li–Li Li–Al Li–Li Li–Al

Al13Li2 7.00 5.45 9.81 5.60

Al13Li3 6.91 5.46 9.77 5.58

Al13Li4 6.54 5.41 9.72 5.61

next nearest neighbor site. The fact that the next nearest
neighbor configurations are indeed energetically lower or
at least equally probable than the nearest neighbor con-
figurations was confirmed by separate quenching runs for
Al13Li2, Al13Li3 and Al13Li4 systems (Figs. 3–5). This can
be explained on the basis of competition between the Li–
Li and Al–Li interaction energies. In an earlier work [9],
it was shown that the Li–Li bond is weaker as compared
to the Li–Al bond.

Table 1 lists out the smallest distances between lithium
atoms and between lithium and aluminum atoms when
the lithium atoms occupy nearest neighbor sites and next
nearest neighbor sites. These bond lengths are larger than
the Li–Li dimer bond length. Heating runs suggest the
weakness of the Li–Li bond as compared to the Li–Al
bond. For example, when the Al13Li2 system is heated,
the two Li atoms were observed to traverse the icosahe-
dral surface quite independent of each other, while being
bound to the aluminum “substrate”. Had the Li–Al bond
been weaker than the Li–Li bond, the two lithium atoms
would have dissociated first from the Al core on grad-
ual increase in their kinetic energy, then moved together,
the process finally culminating into their dissociation from
each other. It was also observed that the Li atoms traverse
the icosahedral surface midway through the Al–Al bonds,
suggesting a lower potential barrier in comparison with
the barrier presented by each Al atom. Hence, it may be
concluded that the dimerisation of Li2 on a spherical Al
surface is not particularly favored.

The pattern continues for three and four lithium atoms
and a next nearest neighbor “lattice” is seen to be favored.
At half filling (m = 10), the picture changes and the Li
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Fig. 6. Ground state geometry of Al13Li10 cluster.

(a)

(b)

Fig. 7. Ground state geometries of (a) Al13Li19 and (b)
Al13Li21 clusters.

atoms attempt to cover the spherical surface. One such
configuration observed is shown in Figure 6. As the num-
ber of atoms go up above ten, the coverage becomes more
and more complete.

A typical configuration at m = 19 is shown in Fig-
ure 7a. In this case, the “defect” due to lack of one lithium
atom with respect to complete coverage is seen. There are
six pentagonal faces, three quadrilateral faces and a trian-

Fig. 8. Ground state geometry of Al13Li20 cluster.

gular face. Thus the lithium atoms around the missing one
adjust to maximize the bonds with the aluminum surface.

The most interesting geometry is shown in Figure 8.
This is a complete coverage of each of the faces of the alu-
minum core icosahedron. It is a five-fold symmetric system
obtained out of purely metal atoms. It exhibits a closed
lithium surface with five-membered rings. It would be in-
teresting to see if such clusters can be experimentally re-
alized and what would the result of an “assembly” of such
clusters be.

Now we examine the geometry obtained by adding one
more lithium atom to the above. This geometry is shown
in Figure 7b. It is evident that the “extra” lithium atom is
unable to occupy a place in the “second” geometric shell
and finds a place in the “third” geometric shell, the shell
with the lone Al atom at the centre being the “zeroth”
shell. The radial distribution (not shown) of the atoms
from the center of mass of the system, shows that the
21st lithium atom is significantly away from the “second”
shell, so that it may be considered to occupy the “third”
geometric shell. This also suggests that the “third” shell
will be most likely completed when all the faces of the
“third” shell are covered by the lithium atoms. There are
12 such faces, suggesting an fivefold symmetric third shell.

In order to verify the quality of the results of our
DBMD calculations, we have also carried out full Kohn-
Sham orbital based calcuations and subsequent geome-
try minimisations using the Car-Parinello technique for a
subset of the clusters investigated using DBMD. This has
been done for Al13Li1, Al13Li19, Al13Li20, Al13Li21 clus-
ters. In these calculations also all the atoms, including the
core Al atoms, have been allowed to move and relax. The
resulting ground state equilibrium structures indicate that

1. Apart from small distortions averaging around 5%, the
overall positions of all the atoms maintain the same ge-
ometry (symmetry) as the ones obtained from DBMD,
suggesting small Jahn-Teller degeneracy lifts in these
metallic systems.

2. The shells as seen from the center of mass have been
expanded by about 5%, on an average, of their DBMD
values.
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Table 2. Comparison of total energies of the Al13Li1, Al13Li19,
Al13Li20, Al13Li21 clusters using the DBMD technique
(Col. 1) and the full Orbital Kohn-Sham calculations (Col. 2).
The energies are in a.u.

Cluster DBMD Kohn-Sham

Al13Li01 −29.019 −27.474

Al13Li19 −34.315 −32.739

Al13Li20 −34.611 −33.036

Al13Li21 −34.886 −33.315

Table 3. Comparison of the average distances from the center
of mass for each shell using the DBMD technique (Cols. 2–4)
and the full orbital based Kohn-Sham technique (Cols. 5–7).
All distances are in a.u.

Cluster DBMD Kohn-Sham

1st shell 2nd shell 3rd shell 1st shell 2nd shell 3rd shell

Al13Li01 4.65 8.54 - 5.09 8.39 -

Al13Li19 4.75 8.60 - 5.15 8.99 -

Al13Li20 4.74 8.63 - 5.35 9.08 -

Al13Li21 4.74 8.60 10.03 5.28 9.09 10.49

3. The total energies for Al13Li1, Al13Li19, Al13Li20,
Al13Li21 clusters show a near constant shift over the
DBMD energies.

The relavant data namely, the average shell distances
from the center of mass and the total energies are shown
in Tables 2, 3. It is gratifying to see that the qualitative
picture depicted by the DBMD simulations has been val-
idated by the full Kohn-Sham calculations.

4 Conclusions

We have carried out density functional calculations on a
system of Al13Lim,m = 1, 2, 3, 4, 10, 19, 20, 21 atoms. It is
clear that in the Al–Li system, the Li atoms tend to max-
imize the Al–Li bonds. The coverage studies suggest that
for low lithium densities the dimerisation of lithium is not
particularly favored. As the number of Li atoms increase,
the availability of next nearest neighbor sites reduces
forcing the Li atoms to increase the Li–Al bond dis-
tances to achieve stability. Upon completion of the third

geometric shell, further addition of lithium atoms starts
the fourth geometric shell. These studies enable us to pre-
dict a novel stable cluster Al13Li20 having a fivefold sym-
metry.
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